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The effect of solute concentration on hindered diffusion of sphere-like colloidal so-
lutes in stiff polymer hydrogels is examined theoretically and experimentally. In the
theoretical development, it is shown that the presence of the gel fibres enhances the
effect of concentration on the thermodynamic driving force for gradient diffusion,
while simultaneously reducing the effect of concentration on the hydrodynamic drag.
The result is that gradient diffusion depends more strongly on solute concentration
in gels than it does in pure solution, by an amount that depends on the partition
coefficient and hydraulic permeability of the gel–solute system. Quantitative calcula-
tions are made to determine the concentration-dependent diffusivity correct to first
order in solute concentration. In order to compare the theoretical predictions with
experimental data, rates of diffusion have been measured for nonionic micelles and
globular proteins in solution and agarose hydrogels at two gel concentrations. The
measurements were performed by using holographic interferometry, through which
one monitors changes in refractive index as gradient diffusion takes place within a
transparent gel. If the solutes are modelled as spheres with short-range repulsive
interactions, then the experimentally measured concentration dependence of the dif-
fusivities of both the protein and micelles is in good agreement with the theoretical
predictions.

1. Introduction
Hindered diffusion refers to the diffusion of compact macromolecules through pores

or interfibre spaces of comparable size (Deen 1987). Like Brownian diffusion in a
pure liquid, this transport process is driven by a gradient in chemical potential that is
caused by a gradient in the solute concentration, and is resisted by the hydrodynamic
drag on the solute. At very dilute solute concentrations, the dominant effects of the
presence of a fibrous gel (or other porous medium) are to increase the hydrodynamic
drag on the solute and to contribute a steric hindrance or tortuosity to its path, as
described previously (Clague & Phillips 1996; Johnson et al. 1996). In this paper,
we consider the effect of finite but low solute concentration on hindered diffusion
in polymer gels, and show that solute–solute interactions are altered in such an
environment through both thermodynamic and hydrodynamic mechanisms.

The effects of concentration on Brownian diffusion in pure liquids have been
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studied previously in some detail. In particular, Batchelor (1976, 1983) has examined
diffusion in dilute colloidal systems by making an analogy between sedimentation and
gradient diffusion. As shown in his earlier work (Batchelor 1972), a dilute suspension
of particles sedimenting under the influence of gravity falls with a velocity that is a
factor of 1−6.55φ lower than that of a single particle, because of the particle–particle
hydrodynamic interactions. Here φ is the volume fraction of the particles. In contrast,
the chemical potential driving force for gradient diffusion increases by a factor of
1 + 8φ in dilute, hard-sphere suspensions, with the net result that gradient diffusion
is enhanced by a factor of 1 + 1.45φ at finite but small concentrations, or where
φ � 1. The reference frame for diffusion here is such that the mean flux of volume
of particles and fluid is zero.

The factors affecting hindered diffusion in gels are not nearly as well understood
as those in solution, because of the complicated effects of the gel–fibre interactions.
However, for rigid, porous and uncharged gels such as agarose, it seems likely that
the same physical processes that combine to determine rates of diffusion in pure
liquids would still be present, but in modified form. In a fibrous medium, one
might anticipate that steric exclusion interactions would effectively reduce the volume
available to spherical solutes, thereby enhancing the thermodynamic driving force
for diffusion. In addition, the gel fibres, which are held fixed by interfibre junctions,
could contribute a hydrodynamic screening which would reduce the hydrodynamic
resistance contributed by solute–solute interactions. Both of these factors would tend
to enhance the effect of solute concentration on hindered diffusion in gels. Thus,
if this description is correct, then when normalized by its value at infinitely dilute
solute concentrations one would expect the gradient diffusion coefficient in a gel to
be increased by more than the solution value of 1 + 1.45φ. In the Sections that follow
we calculate these effects quantitatively in the limit where φ � 1, and subsequently
evaluate the validity of the proposed qualitative description of diffusion in gels by
comparing our predictions with new experimental measurements.

In previous work on diffusion at infinitely dilute solute concentrations (Phillips,
Deen & Brady 1989, 1990; Clague & Phillips 1996; Johnson et al. 1996), it has been
shown that the effect of the gel fibres on the hydrodynamic drag on the solute is
well-described by Brinkman’s equation,

η∇2u− ∇p =
η

k
u, (1)

where η is the solvent viscosity. Although originally proposed by Brinkman (1947)
based on heuristic arguments, (1) has also been derived by renormalizing Stokes’
equations in dilute porous media and neglecting any effects contributed by the
detailed structure of the medium, save those that are contained in the hydraulic
permeability k (Hinch 1977; Kim & Russel 1985a). Direct simulations have verified
that (1) accurately describes screening in such dilute systems (Durlofsky & Brady
1987). In addition, under many conditions of interest, calculations of the drag on
a sphere via Brinkman’s equation are in good agreement with direct calculations
for a sphere in a three-dimensional, disordered array of cylindrical fibres (Clague
& Phillips 1996). With regard to comparisons with experimental data, it has been
shown that the hydrodynamic effects captured by (1), combined with the steric or
geometric effects associated with a random walk through a network of fibres, can
be used to derive quantitative estimates of hindered diffusion coefficients in agarose
gels (Clague & Phillips 1996; Johnson et al. 1996). Because of its theoretical and
experimental success in describing hydrodynamic effects in fibrous gels, in this work
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we use Brinkman’s equation to account for the screening of sphere–sphere interactions
that is induced by the presence of the gel fibres.

In order to test our quantitative predictions of the effect of concentration on
hindered gradient diffusion, we have measured gradient diffusion coefficients for two
spherical solutes over a range of solute and gel-fibre concentrations. Our measure-
ments were made under conditions where non-hydrodynamic interactions between
solutes are expected to be weak and of short range. The agarose that was used as a
fibrous medium is a relatively stiff, nonionic polysaccharide gel that has been used
previously in experiments at conditions of infinite dilution (Johnson et al. 1996; Kong
et al. 1997). The measurements were performed by using holographic laser interfer-
ometry. In this method one first makes a holographic image of a gel in which there is
a concentration gradient. After several hours, concentration changes in the gel cause
changes in the refractive index profile, and superposition of the holographic image
and the actual gel results in a pattern of interference fringes that can be analysed to
yield the diffusion coefficient. The method is completely non-invasive, and has been
verified previously for both liquid and gel systems (Gustafsson et al. 1993; Kosar &
Phillips 1995; Kong et al. 1997).

In § 2 below we first calculate to order φ the effect of the gel on the thermodynamic
force that drives diffusion. We then calculate, again to order φ, the rate of sedimen-
tation of a suspension of spherical particles in a Brinkman medium. As a part of
that calculation, one must compute the solution to the problem of two sedimenting,
interacting spheres. We describe Faxén laws for calculating that interaction for dis-
tant spheres, as well as our numerical method for solving the two-sphere problem at
arbitrary separations, in § 3. Also presented in § 3 is the renormalization procedure
used to ensure that the mean flow and divergence of the mean deviatoric stress are
zero in the statistically homogeneous, sedimenting suspension. Our experimental tech-
nique is presented in § 4, and our results are discussed and compared with theoretical
predictions in § 5. Section 6 consists of some concluding remarks.

2. Problem formulation
We consider a system composed of N spherical solutes and N0 solvent molecules in

a volume V of a statistically homogeneous fibrous medium. Each solute particle has
volume v, each solvent molecule has volume v0, and the fibre volume fraction φf is
small, φf � 1. Following the reasoning of Batchelor (1976), there is a ‘thermodynamic’
force F acting on the solutes given by

F = −∇µg = −
(
∂µg

∂n

)
P ,T

∇n, (2)

where µg is the chemical potential of a solute molecule in the gel or fibrous medium,
P and T are the thermodynamic pressure and temperature, and n is the number
density of solutes, n = N/V . The thermodynamic force F 0 on each solvent molecule
is given by

F 0 = −∇µ0 = −
(
∂µ0

∂n

)
P ,T

∇n = − n

n0

F , (3)

where the last equality is inferred from the Gibbs–Duhem equation,

n0

∂µ0

∂n
+ n

∂µg

∂n
= 0. (4)
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In (3) and (4), µ0 is the chemical potential of the solvent and n0 is the number density
of the solvent molecules. In this analysis the rigid, interconnected gel fibres are treated
as a single particle of a species with a number density that is asymptotically close
to zero. Hence, they play no role thermodynamically except to reduce the volume
available to the solute and solvent molecules.

Since a uniform body force −F 0/v0 applied throughout the system produces no
relative motion, one can consider a system where the solute is acted upon by an
enhanced force F ∗, where

F ∗ = F

(
1 +

nv

n0v0

)
= − 1− φf

1− φg − φf
(
∂µg

∂φg

)
P ,T

∇φg (5)

and the solvent molecules are force-free. In addition, at low Reynolds number the flux
of particles is linear in the driving force, and hence the flux due to the force F ∗ can be
found by using the ‘sedimentation’ coefficient K(φg;φf, β). Here we define K as the
sedimentation velocity of a particle in a homogeneous suspension with particle volume
fraction φg through a homogeneous fibrous medium with fibre volume fraction φf ,
normalized by the velocity of a single particle through a Newtonian fluid with the
same viscosity as that of the solvent filling the gel. The parameter β is the ratio of
the solute radius to the fibre radius.

The particle flux N is therefore given by

N = − K

6πηa

φg(1− φf)
1− φg − φf

(
∂µg

∂φg

)
P ,T

∇n, (6)

whence the scalar diffusivity D is identified as

D =
K

6πηa

φg(1− φf)
1− φg − φf

(
∂µg

∂φg

)
P ,T

. (7)

The flux in (6) is relative to zero-volume-flux axes, which is the same as being relative
to the rigidly interconnected fibres. In this development it has been assumed that
the solutes are spheres and the fibrous medium is isotropic, so that the diffusivity
tensor can be represented as DI , where I is the identity tensor. In addition, it
has been tacitly assumed that the concentration gradient is small enough so that
L|∇ log n| � 1 and is constant over a region of gel with dimension L, so that each
particle in the volume V experiences the same thermodynamic driving force. In the
limit where φf → 0, the sedimentation coefficient K becomes 1− 6.55φg +O(φ2

g) and

φg(∂µg/∂φg)P ,T = kT (1 + 7φg +O(φ2
g)), and hence (7) becomes the well-known result

derived by Batchelor (1976),

D =
kT

6πηa

(
1 + 1.45φg + O(φ2

g)
)

as φf → 0. (8)

In the limit φg → 0 but φf finite, (7) accurately predicts the infinite-dilution hindered
diffusion coefficient D0 in gels if the right-hand side is multiplied by a steric hindrance
or tortuosity factor (Clague & Phillips 1996; Johnson et al. 1996). When the effect
of concentration on the chemical potential is accounted for explicitly, as in (7), this
steric factor is independent of solute concentration, and hence does not affect the
concentration dependence of D/D0 that is of interest here.

From (7) and the development leading to (8), it is clear that the dependence on
concentration of the rate of hindered diffusion in a gel requires quantitative expres-
sions for the modified sedimentation coefficient K and the derivative (∂µg/∂φg)P ,T
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of the chemical potential in the gel. Evaluation of the latter term is facilitated by
considering a bulk phase of pure solution which is in equilibrium with the gel. As a
condition of equilibrium, it must be true that the chemical potential µg(φg;φf, β) of
the solute in the gel and µb(φb) of that in the bulk solution are equal. Furthermore,
we define a partition coefficient κ as the equilibrium ratio of the volume fraction of
solute in the gel to that in the bulk solution,

κ(φg;φf, β) =
φg

φb
= κ0 + κ1φb + · · · , (9)

where κ0 and κ1 are virial coefficients. Equation (9) and the requirement that the
chemical potentials be equal lead to the relation(

∂µb

∂φb

)
P ,T

= (κ0 + 2κ1φb + · · ·)
(
∂µg

∂φg

)
P ,T

. (10)

Substituting for the derivative of the bulk chemical potential (kT/φb)(1 + 7φb) as
used in the derivation of (8), and again making use of (9), one finds that

φg

(
∂µg

∂φg

)
P ,T

= kT

[
1 +

(
7− κ1

κ0

)
φg

κ0

+ O(φ2
g)

]
. (11)

Partitioning of spherical solutes in fibrous matrices has been studied by Fanti &
Glandt (1990). Using a superposition approximation, they show that the partition
coefficient at low to moderate fibre densities can be written in terms of g0

ms, the
fiber–solute pair correlation function around a single fibre, according to

κ = exp

[
l

∫ ∞
0

2πt(g0
ms(t)− 1) dt

]
. (12)

In (12), l is the length of fibre per unit volume of matrix. Dividing the domain of
the integration into two regions, one where 0 < t < a + af (i.e. where g0

ms = 0) and
the other where t > a+ af , and writing the virial expansion g0

ms = 1 + φbg
1
ms(t) + · · ·

in the region t > a+ af , one finds that

κ = κ0

[
1 + φbl

∫ ∞
a+af

2πtg1
ms(t) dt+ · · ·

]
(13)

where

κ0 = e−(1+β)2φf . (14)

Here β is the ratio of the sphere radius to the fibre radius, β = a/af . The result for
the infinite-dilution partition coefficient κ0 in (14) was first derived by Ogston (1958).
From (13), one sees that κ1/κ0 ∼ O(φf), and since φf ∼ φg in the current problem,
the right-hand side of (11) simplifies to kT

(
1 + (7/κ0)φg + O(φ2

g)
)
. The evaluation of

the contribution of the chemical potential term in (7) is therefore complete, and the
problem becomes one of determining the sedimentation coefficient K correct to order
φg . In the derivation that follows, attention is focused exclusively on the gel phase,
and the subscript g is therefore dropped, it being understood that φ refers only to
the volume fraction of solute in the gel.
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3. Sedimentation in a Brinkman medium
At low solute volume fractions, the sedimentation coefficient may be expanded as

K(φ) = K0 +K1φ+ O(φ2), (15)

where K0 is determined from the solution for a single sphere sedimenting in a
Brinkman medium, and K1 can only be obtained by accounting for two-sphere
interactions. A single sphere at x0 with radius a sedimenting with velocity U through
a Brinkman medium causes velocity and pressure disturbances u(x) and p(x) given
by (Howells 1974; Kim & Russel 1985b)

u(x) = 3
4
a[B0(αa) + a2B2(αa)∇2]J(x− x0) ·U

and
p = 3

2
aηB0(αa)U · ∇(1/r),

 (16)

where r = |x − x0|, α = 1/
√
k, B0(z) = 1 + z + 1

3
z2 and B2(z) = (ez − B0(z))/z

2. The
term J(x) in (16) is the fundamental solution to Brinkman’s equation (1), given by
(Howells 1974)

J (x) =
6

α2r5

[
1− (1 + αr + 1

3
α2r2)e−αr

]
xx+

2

α2r3

[
(1 + αr + α2r2)e−αr − 1

]
I . (17)

The solution for u and p in (16) is found by solving (1) subject to no-slip boundary
conditions on the sphere surface, and the conditions that the velocity and pressure
decay to zero far from the sphere.

To find the sedimentation coefficient K0 from the solution (16), one makes use of
the balance between the hydrodynamic drag and gravitational forces on the sphere.
The drag force F s is obtained by evaluating the integral

F s = −
∫
Sp

Π · n dS, (18)

where Sp is the sphere surface and Π = −pI + η(∇u+∇ut). The result is (Solomentsev
& Anderson 1996)

F s = 6πηa
(
1 + αa+ 1

9
α2a2

)
U , (19)

from which one finds that

K0 =
1

1 + αa+ 1
9
α2a2

. (20)

Interestingly, for the force on a sphere fixed in place in a uniform imposed flow, the
1
9
α2a2 term in (19) becomes 1

3
α2a2. As discussed by Solomentsev & Anderson (1996),

the reason for the difference is that a constant, imposed flow in a Brinkman medium
requires a corresponding imposed pressure gradient, and the latter exerts a force on
the sphere that is not present when the medium is quiescent and the sphere is moving.

3.1. Faxén laws in a Brinkman medium

In order to calculate the term K1 in (15), it is necessary to have Faxén laws that
yield the force on a spherical particle caused by the disturbance flow produced by a
second, distant particle. Such laws have been derived previously by Howells (1974)
and Kim & Russel (1985b) for fixed particles in an imposed flow. However, without
some modification, those expressions are not appropriate for our purposes. At the
end of this Section we compare those expressions with the ones derived here.

Following Brenner (1964), we make use of the reciprocal theorem to derive a Faxén
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law for the force on a sphere in a Brinkman medium. Consider two velocity fields u
and v which, with their associated pressure fields p and q, are solutions to (1). The
velocity u is that around a sphere moving with velocity U as given in (16), while v is
an imposed, disturbance velocity field. From mass conservation we have that

∇ · u = 0 and ∇ · v = 0, (21)

and the stresses associated with the two velocities are given by Π and σ, where

Π = −pI + η(∇u+ ∇ut) (22)

and
σ = −qI + η(∇v + ∇vt). (23)

By following the usual procedure for deriving the reciprocal theorem (Deen 1998),
and making use of the fact that ∇ · σ = ηα2v and ∇ ·Π = ηα2u, one finds that∫

Sp

u(n · σ) dS =

∫
Sp

v(n ·Π) dS, (24)

which has the same form as the reciprocal theorem normally used for Stokes equations.
In deriving (24) it has been assumed that the velocities and stresses decay to zero far
from the particle, so that any integrals over surfaces infinitely far from the particle
are negligible.

By making use of (16) and (22), one finds that

n ·Π = U · {I 3
2
(1 + αa) + 1

2
α2a2xx

}
at r = a (25)

for a single sphere moving with velocity U . Since u = U on Sp and since the sphere
velocity U is arbitrary, substitution of (25) into (24) yields for the force F v induced
by the velocity disturbance v

F v =

∫
Sp

v · {I 3
2
(1 + αa) + 1

2
α2a2xx} ds. (26)

If v varies smoothly around Sp, then it can be expanded in a Taylor series about the
sphere centre x0, yielding

v = v|x0
+ x · ∇v|x0

+ 1
2
xx : ∇∇v|x0

+ · · · . (27)

Substituting this result into (26) and evaluating the integrals yields

F v = 6πηa{[1 + αa+ 1
9
α2a2]v|x0

+ 1
6
[1 + αa+ 7

60
α2a2 + O(α3a3)]∇2v|x0

}, (28)

which is the desired Faxén law for the force.
An entirely analogous procedure can be followed to find a Faxén law for the torque

caused by v. However, instead of u corresponding to the flow around a translating
sphere, we let it equal the flow around a sphere rotating with angular velocity Ω in a
quiescent Brinkman medium, given by p = 0 and (Solomentsev & Anderson 1996)

u = Ω× xeα(a−r)

r3

(
1 + αr

1 + αa

)
. (29)

Substituting (29) into (22) and (24) and evaluating the resulting surface integrals
yields for the torque

Lv = 8πηa3 1 + αa+ 1
3
α2a2

1 + αa
ω(x0), (30)

where ω = ( 1
2
)∇× v is the vorticity of the disturbance flow.
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V

Sp

S
ε

x0
y

n

Figure 1. The volume V surrounding the spherical surfaces Sp and Sε, the latter surrounding a
point singularity at position y.

Equations (28) and (30) differ from the Faxén laws given previously (Howells 1974;
Kim & Russel 1985b). We therefore consider a different method of derivation that
yields the earlier forms, and then reconcile the two with one another. As shown in
figure 1, we now consider a volume V that is outside both a spherical particle at x0

with surface Sp and a point singularity with strength F s at y. The point singularity is
surrounded by a surface Sε, and the volume inside the spherical particle is denoted by
Vp. We again let the velocity u and stress Π correspond to the disturbance around a
sphere translating with velocity U . However, here v and σ are the velocity and stress
caused by the singularity at y plus a collection of image singularities in Vp which are
chosen to yield v = 0 on Sp.

Applying the reciprocal theorem (24) to the system shown in figure 1, and using
the boundary condition that u = U and v = 0 on Sp, one finds that

U · F v +

∫
Sε

u · (σ · n) dS =

∫
Sε

v · (Π · n) dS. (31)

Shrinking the surface Sε to a point at y, and using the fact that the velocity U is
arbitrary, one finds

F v = 6πηa
{

[1 + αa+ 1
3
α2a2] + [eαa − 1− αa− 1

3
α2a2]α−2∇2

}
×
(

1

8πη

)
J (x− y)|x= x0

· F s. (32)

The J · F s term in (32) is just the velocity disturbance caused by the singularity at
y evaluated at the sphere centre x0. Since any velocity disturbance v can be created
by superposing a collection of singularities, that term can be replaced by the more
general disturbance v|x= x0

, yielding a result with the same form as (28), but differing
in the terms that are O(α2a2). Equation (32) is the Faxén law given by Howells (1974)
and Kim & Russel (1985b).

The two forms (28) and (32) can be reconciled if one considers that, in the latter
derivation, image singularities inside the volume Vp are required to move the fluid in
Vp such that v = 0 on Sp. The region Vp inside Sp must therefore contain a Brinkman
medium, and this flow results in a force density ηα2v everywhere inside the sphere,
which provides a correction to (32). Evaluation of the required volume integral is
complicated by the presence of the singularities, whose positions and strengths are in
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general unknown. However, that problem can be circumvented by noting that∫
Vp

ηα2v dV = ηα2

∫
Vp

∇ · (vx) dV = ηα2

∫
Sp

n · (vx) dS. (33)

Having expressed the correction as a surface integral, provided that the singularity
at y is not too close to the sphere, the velocity v can again be written as the Taylor
expansion (27). Substituting that expansion into the surface integral in (33) and
evaluating the terms yields a correction of

− 4
3
πηa3α2v|x0

− 4
30
πηα2a5∇2v|x0

, (34)

which when added to the right-hand side of (32) yields (28).
To apply the singularity method to the derivation of a Faxén law for the torque,

we let the velocity u correspond to that of a sphere rotating with angular velocity Ω,
as given in (29). Expressed in terms of the Green’s function J , this velocity is

ui(x) =

(
a3

2

)
eαa

1 + αa
Ωmεjkm

∂

∂xk
Jij(x− x0), (35)

where εjkm is the permutation symbol and indicial notation has been used. In this
case the reciprocal theorem (24), written over both the surfaces Sp and Sε, reduces to

Lv = 8πηa3 eαa

1 + αa
ω(x0) (36)

where again ω = 1
2
∇× v is the vorticity of the velocity field v.

As in the force problem, the flow in the Brinkman medium inside Vp induces a
torque correction of ∫

Vp

x× ηα2v dV , (37)

and accounting for this term reconciles (36) and (30). In this case, the correction term
cannot be simply recast into a surface integral. However, the largest portion of the
flow field v inside Vp that causes a torque is the flow due to a point-torque at x0

that cancels the rotation ω on Sp, and can be evaluated by substituting ω for Ω in
(29). Substituting the resulting expression for v into (37) and evaluating the volume
integral yields a correction of

−8πηa3

3

[
eαa − (1 + αa)

1 + αa

]
ω(x0) (38)

which, when added to the right-hand side of (36), yields (30) to O(α2a2).
The preceding discussion shows that, when an imposed flow v and its associated

stress decay to zero far from a particle, the correct Faxén law for determining the
resulting force is (28). Equation (32) contains a contribution from flow inside the
particle which is not appropriate for a hard-sphere solute. Using (28) together with
(19) shows that a velocity disturbance v causes a force-free sphere at x0 to translate
with a velocity v(x0), plus a correction due to the Laplacian term. Similarly, a torque-
free sphere rotates with angular velocity ω(x0). Because the divergence of the stress
is not zero in a Brinkman medium, when a disturbance flow acts on a particle, the
strength of a force singularity at the sphere centre needed to cancel the disturbance
velocity on the surface is greater than the actual surface force as given by (18).
Equation (32), with J · F replaced by v, yields the strength of such a singularity.
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It also yields the actual surface force for a flow field driven by a pressure gradient
imposed far from the sphere, since the contribution of the imposed pressure gradient
cancels the correction (33) for the flow in Vp.

3.2. The renormalization procedure

Following Batchelor (1972), the average change U
′

in the velocity of a test sphere at
x0 caused by the presence of N spheres in the configuration CN is given by

U
′
=

1

N!

∫
U ′(x0, CN)P (CN |x0) dCN. (39)

Here P (CN |x0) is the probability of configuration CN given that a sphere is at x0, and
dCN = dr1 . . .drN is an integration over the positions of all N spheres. The velocity
change U ′ for a particular configuration is found from the Faxén law (28) to be

U ′(x0, CN) =
1

A0(αa)
(A0(αa) + a2A2(αa)∇2)u(x, CN)|x= x0

, (40)

where A0(z) = 1 + z + 1
9
z2, A2(z) = 1

6

(
1 + z + 7

60
z2
)
, and u is the fluid velocity

disturbance caused by the N spheres.
Expressing u(x, CN) as the superposition of the velocity disturbances from each

sphere in the dilute suspension, and using that for a dilute suspension

P (CN |x0) ≈ P (x0 + rk|x0)P (CN−1), (41)

where x0 + rk is the position of the centre of the kth sphere, (39) can be simplified to

U
′
=

∫
r>2a

U ′(x0, x0 + r)P (x0 + r|x0) dr. (42)

In sedimentation through a pure fluid, the disturbance U ′ decays as 1/r, and hence
the integral in (42) is not convergent. Physically this difficulty may be attributed to
the fact that, for widely separated spheres, it is inappropriate to calculate two-sphere
interactions as if they occurred through a pure fluid. Batchelor (1972) successfully

evaluated U
′
by renormalizing the divergent integral. The renormalization is achieved

by using the physical insights that the mean flow and the divergence of the mean
deviatoric stress are zero in a statistically homogeneous suspension. With this infor-
mation, the integral in (42) over the unbounded space r > 2a can be re-expressed in
terms of integrals in the region 0 6 r 6 2a, which yield a finite result.

When two spheres interact through a Brinkman medium, the disturbance U ′ decays
more rapidly than 1/r as a result of Brinkman screening. For widely separated spheres,
the most slowly decaying part of the velocity disturbance from a sphere at x0 + r is
( 1

8
πη)J(r) · F , where F is the gravitational force (4π/3)a3∆ρg, g being gravity and ∆ρ

the density difference between the particles and the Brinkman medium. From (17),
one sees therefore that U ′ decays as 1/r3 in the current problem, a rate that still leads
to convergence difficulties. If the angular integrations in (42) are performed first, one
finds that the O(1/r3) terms cancel and the integrand decays exponentially, making
the integral convergent. Nonetheless, (42) is still missing important physical aspects
of the sedimentation problem.

For two widely separated spheres in a suspension sedimenting through a Brinkman
medium, the sphere–sphere interaction cannot be calculated via a two-sphere problem
which does not account for the other particles. To see this, consider that far from a
test sphere located at x0, averaging the effect of a second sphere at x0 + r is equivalent
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to placing a uniform distribution of point forces and quadrupoles throughout the
Brinkman medium (cf. (16)). A distribution of point forces with strength F in an
unbounded medium drives a net flow proportional to nF /ηα2, where n is the number
density of particles. Although this flow is finite since α2 > 0 in a Brinkman medium,
clearly in actual sedimentation in a container with a bottom there must be zero
mean flow, a characteristic that is missed in straightforward application of (42). One
consequence of this failure is that (42) predicts that a suspension in a Brinkman
medium would have a settling velocity that is faster than that of a single particle. To
avoid this problem, and a similar difficulty with the divergence of the mean deviatoric
stress, we follow the renormalization procedure of Batchelor (1972). In other words,
we use known, mean properties of the suspension to change the domain of integration
in (42) from being infinite to finite, using the two-sphere problem only to calculate
local interactions.

We begin by subtracting the far-field interaction terms from U ′ in (39) and placing
them in a separate term, as follows:

U
′
=

1

N!

∫ [
U ′(x0, CN)− 1

A0

(A0 + a2A2∇2)u(x, CN)|x= x0

]
P (CN |x0) dCN

+
1

N!

∫
1

A0

(A0 + a2A2∇2)u(x, CN)|x= x0
P (CN |x0) dCN. (43)

We refer to the first integral in (43) as W . It contains only short-range interactions,
and is calculated numerically in the next Section. The second integral, which we
denote by V , is to be re-expressed as an integral over a finite domain as discussed
above.

The velocity ū(x) averaged over the fluid and particles can be written as

ū(x) =
1

N!

∫
u(x, CN)P (CN) dCN = 0, (44)

where the last equality expresses the fact that the mean velocity is zero. Similarly,
as noted by Batchelor (1972), the mean value of the deviatoric stress τ = Π − ( 1

3
)pI

is constant in a statistically homogeneous, sedimenting suspension, and hence its
divergence must be zero, so that

1

N!

∫
∇ · τ (x, CN)P (CN) dCN = 0. (45)

Note that ∇ · τ is equal to η∇2u in the fluid phase.
Since the integrals in (44) and (45) are zero, they can be subtracted from the second

integral in (43), yielding

V (x0, CN) =
1

N!

∫
u(x0, CN)[P (CN |x0)− P (CN)] dCN

+
1

N!

∫
a2A2

A0

{∇2u(x, CN)}x= x0
P (CN |x0) dCN

−a
2A2

ηA0

1

N!

{∫
∇ · τ (x, CN)P (CN) dCN

}
x= x0

. (46)

The integral over ∇ · τ in (46) can be simplified by first noting that

P (CN) = P (CN−1|x0 + rk)P (x0 + rk) = P (CN−1|x0 + rk)n (47)
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and dCN = drkdCN−1. The integral over drk can then be separated into two regions,
one where |x0+rk−x| 6 a (i.e. x is inside the kth sphere) and one where |x0+rk−x| > a
(i.e. x is outside the kth sphere). This yields

1

N!

∫
∇ · τ (x, CN)P (CN) dCN

=
1

N!

∫ ∫
|x0+rk−x|6a

∇ · τ (x, CN)P (CN−1|x0 + rk)n drk dCN−1

+
1

N!

∫ ∫
|x0+rk−x|>a

∇ · τ (x, CN)P (CN−1|x0 + rk)n drk dCN−1. (48)

Proceeding to separate out the integrals over the interiors of all the N spheres, as is
done with the kth sphere in (48), converts the first integral on the right-hand side of
(48) to a sum from 1 to N. In addition, the second integral is restricted to points x
in the fluid phase, where |x0 + rk − x| > a for all values of k, so that ∇ · τ may be
replaced by η∇2u. The right-hand side of (48) is then

N∑
k= 1

n

N!

∫
f(x0 + rk, CN−1)P (CN−1|x0 + rk) dCN−1

+
1

N!

∫
|x0+rk−x|>a, all k

η∇2u(x, CN)P (CN) dCN, (49)

where the integrals of ∇ · τ over the interiors of the spheres have been converted
to surface integrals of the force density n · τ by using the divergence theorem, and
evaluated. The integral of n · τ over the sphere surfaces yields, to leading order, the
viscous stress on an isolated, sedimenting sphere, which is f = −4πηaU 0(1 + αa) in a
Brinkman medium (Howells 1974).

Substitution of (49) into (46) yields a renormalized expression for the far-field
velocity correction V :

V (x0, CN) =
1

N!

∫
u(x0, CN)[P (CN |x0)− P (CN)] dCN − na2A2(αa)

ηA0(αa)
f

+
1

N!

∫
rk>a

a2A2(αa)

A0(αa)

{∇2u(x, CN)
}
x=x0

[P (CN |x0)− P (CN)] dCN, (50)

where the integral over f has been evaluated by using that P (CN−1|x0 +rk) ≈ P (CN−1)
in a dilute suspension. Also, because the second integral in (50) is independent of x,
there x has been set equal to x0.

By writing u(x0, CN) as a sum of contributions from the N spheres, and using that

P (CN |x0)− P (CN) = P (x0 + rk|x0)P (CN−1|x0, x0 + rk)− P (x0 + rk)P (CN−1|x0 + rk)

≈ [P (x0 + rk|x0)− P (x0 + rk)]P (CN−1) (51)

in a dilute suspension, (50) simplifies further to

V =

∫
r

u(x0, x0 + r)[P (x0 + r|x0)− P (x0 + r)] dr − na2A2(αa)

ηA0(αa)
f

+

∫
r>a

a2A2(αa)

A0(αa)

{∇2u(x, x+ r)
}
x= x0

[P (x0 + r|x0)− P (x0 + r)] dr. (52)
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Now we make use of the relations

P (x0 + r|x0) =

{
0 for r < 2a

n for r > 2a
(53)

and

P (x0 + r) = n for all r. (54)

In addition, we know that u = U 0 for r < a and that u is given by (16) for r > a.
Equation (52) can then be written as

V = −φU 0 − 3φU 0

A2(αa)

A0(αa)
(1 + αa)− 3na

4

∫
a<r<2a

(B0 + a2B2∇2)J ·U 0 dr

−3na3

4

A2(αa)

A0(αa)

∫
a<r<2a

∇2(B0 + a2B2∇2)J ·U 0 dr, (55)

where U 0 is the velocity of an isolated sphere in a Brinkman medium. The last
integral in (55) can be conveniently simplified by noting that

(B0 + a2B2∇2)∇2J = (B0 + a2α2B2)∇2J = eαa∇2J . (56)

Evaluating the integrals in (55) yields

V = −φU 0 − 3φU 0

(
1

α2a2

)
[(1 + αa)− e−αa(1 + 2αa)]

+3φU 0

(
A2(αa)

A0(αa)

)
e−αa(1 + 2αa). (57)

In the limit αa → 0, V in (57) becomes equal to −5φU 0, a result that is consistent
with that of Batchelor (1972) for sedimentation in pure fluids.

3.3. Numerical calculation of two-sphere interactions

We now turn our attention to the numerical calculation of W in (43), where

W =
1

N!

∫ [
U ′(x0, CN)− 1

A0

(A0 + a2A2∇2)u(x, CN)|x= x0

]
P (CN |x0) dCN. (58)

As with the far-field interaction term V , and as described by Batchelor (1972), in
a dilute suspension W can be simplified to a form that involves only two-sphere
interactions:

W = n

∫ [
U ′(x0, x0 + r)− 1

A0

(A0 + a2A2∇2)u(x, x+ r)|x= x0

]
dr. (59)

In (59), U ′(x0, x0 + r) is the change in velocity of a sphere at x0 caused by a
sphere at x0 + r, a quantity which is obtained by solving numerically the problem
of two spheres sedimenting in a Brinkman medium. The far-field subtraction term is
evaluated analytically below.

Like Stokes equations, Brinkman’s equation is linear, and the velocity U of a sphere
at x0 in the presence of a second sphere at x0 + r can be written in the form

U = [λ1(r)rr + λ2(r)(I − rr)] · F , (60)

where F is the gravitational force on both spheres. The scalar functions λ1(r) and
λ2(r) describe the behaviour when the line-of-centres between the two bodies is in
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U

U

U

U

y

x

(b)(a)

Figure 2. Two spheres moving (a) in the x-direction, along their line of centres, and (b) in the
y-direction, perpendicular to their line of centres. The spheres moving in the y-direction have
rotational velocities that are equal in magnitude but in opposite directions (i.e. ±ez).

the direction of or perpendicular to F , respectively. As shown in figure 2, in each
configuration the two spheres have equal translational velocities in either the x- or
y-direction. For the configuration in figure 2(a), where the spheres move in a direction
parallel to their line-of-centres, their rotational velocities are zero. When the spheres
move perpendicular to their line-of-centres, as shown in figure 2(b), they rotate in
the z-direction with angular velocities that are equal in magnitude but in opposite
directions. Determination of the two scalar functions in (60) provides the required
solution to the two-sphere interaction problem in a Brinkman medium.

To obtain this solution, we make use of a singularity method that has been used
successfully in the past for calculating low-Reynolds-number flows (Dabros 1985;
Nitsche & Brenner 1990; Clague & Phillips 1996, 1997) and linearized-Poisson–
Boltzmann electrostatic interactions (Phillips 1995). In this method, the velocity field
u(x) is written as the superposition of contributions from Nf point-force singularities
located inside the spheres. The strengths of the singularities are chosen so as to
minimize the deviation from the no-slip boundary condition at Ns points on the
sphere surfaces. For two spheres translating with velocity U and not rotating, this
procedure yields a system of equations with the form

1

8πη

Nf∑
i= 1

J(xjs − xif) · fi = U , j = 1, 2 . . . Ns, (61)

where xjs and xif are the positions of the jth surface point and ith singularity,
respectively. The unknown quantities in (61) are the strengths fi of the Nf singularities.
Because two spheres sedimenting perpendicular to their line-of-centres rotate as well as
translate, the determination of λ1(r) and λ2(r) also requires consideration of problems
where the two spheres rotate with rotational velocities that are equal in magnitude, but
in opposite directions. In that case, the right-hand side of (61) is replaced with ±Ω×xjs .

In a singularity method of this type, the region inside the sphere surfaces is treated
as a Brinkman medium which resists the fluid motion caused by the singularities. This
resistance, which is a manifestation of the fact that the divergence of the stress is not
zero in a Brinkman medium, results in the force on the sphere being different from
the sum of the strengths of the point-force singularities. In this work, the force was
calculated by direct application of (18), and the torques L were calculated similarly
by using

L = −
∫
s

xs × (Π · n) dS, (62)
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where xs is a vector from the sphere centre to a point on its surface. The integration
was performed by using Simpson’s rule with angular divisions of π/80.

To obtain the two-sphere mobility matrix, we first form the resistance matrix by
imposing translational and rotational velocities on two spheres as shown in figure 2,
and calculate the resulting forces and torques. We need consider only cases where
the two spheres translate with equal velocities in the x-direction, translate with
equal velocities in the y-direction but do not rotate, or rotate in the z-direction
with rotational velocities equal in magnitude but opposite in direction. The resulting
resistance matrix relates the force and torque of one of the two particles to its
translational and rotational velocities according to Fx

Fy
Lz

 =

 Axx 0 0
0 Ayy Byz
0 Byz Dzz

 ·
 Ux

Uy

Ωz

 , (63)

where x and y are coordinate directions as defined in figure 2. For torque-free spheres,
inverting (63) yields for the mobility relation

[
Ux

Uy

]
=


1

Axx
0

0
−Dzz

B2
yz − DzzAyy

 · [ FxFy
]
. (64)

In general the mobility functions λ1(r) and λ2(r) therefore correspond to 1/Axx
and −Dzz/(B2

yz − DzzAyy), respectively. The one exception occurs when two spheres
sedimenting perpendicular to their line-of-centres are touching (i.e. r = 2a). In that
case, the spheres do not rotate so that Ωz = 0 and λ2 = 1/Ayy (Goldman, Cox &
Brenner 1966).

Based on the residual errors at the Ns surface points, this method of calculation has
been found to yield accurate results to at least the fourth decimal place. Its efficacy
was also verified in two other ways. First, by substituting the Green’s function G(x)
for Stokes flow in place of J(x) in (61), where

G(x) =
I

r
+
xx

r3
, (65)

the solution for two spheres interacting in a pure fluid at low Reynolds number was
obtained. The resulting values for λ1(r) and λ2(r) for Stokes flow were in excellent
agreement with those reported by Goldman et al. (1966) and Batchelor (1972). In
addition, calculation of resistance functions and comparison with figures 3 and 4 of
the paper by Kim & Russel (1985b) also showed excellent agreement between our
calculation and theirs.

Our results for λ1(r) and λ2(r) for two spheres sedimenting in a Brinkman medium
are plotted in figure 3(a, b) for several values of αa. The integral in (59) yielding
W can be evaluated by using these solutions. Substituting A0(αa)U 0 for F in (60),
subtracting U 0 in order to obtain U ′, and performing the angular integrations yields

W = φU 0

∫ ∞
2

{
λ1 + 2λ2 − 3

[
1 +

1

A0(αa)

a

r

×
(

1 + αa+
α2a2

36
+ O(α3a3)

)
eα(a−r)

]}(
r

a

)2

d

(
r

a

)
. (66)

Here the term λ1 + 2λ2 − 3 contains the complete, numerically calculated two-sphere
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Figure 3. Plot of (a) λ1(r) and (b) λ2(r) for αa = 0, 0.1, 0.2, 0.3 and 0.4.

interaction, and the remainder of the subtraction term inside the square brackets
corresponds to the far-field subtraction term in the integrand of (59). As can be
seen from (59), the subtraction term accounts for the point-force and quadrupole
perturbations to the velocity of the test sphere at x0 that are made by a second
sedimenting sphere at x0 + r.

The slowest decaying portion of the integrand in (66) is contributed by the stresslet
on the sphere at x0 + r that is induced by the test sphere at x0. The strength of this
stresslet is (Kim & Russel 1985b)

Sij = − 20
3
πηa3H(αa)e′ij , (67)

where the function H(αa) is given by

H(αa) =
1 + αa+ 2

5
(αa)2 + 1

15
(αa)3

1 + αa
, (68)

the rate-of-strain disturbance e′ij = 1
2
(∇ju′i +∇iu′j), and the disturbance velocity u′ may

be calculated using the point-force velocity disturbance contributed by the sphere at
x0. The velocity perturbation us caused by the stresslet induced on the sphere at x0 + r
is given by

usi = KijkSjk, (69)

where the propagator Kijk = 1
2
(∇kJij + ∇jJik) is directly analogous to that used in

multipole moment expansions in Stokes flow calculations (Durlofsky, Brady & Bossis
1987).

Using the velocity disturbance usi in conjunction with the Faxén law (28), far-field
contributions to λ1 and λ2 beyond those included in (66) can be obtained. These
contributions, which are denoted by λs1 and λs2, are given by

λs1 =
−135

(αa)4(r/a)8
A0(αa)H(αa)

(
eαr − 1− αr − 1

3
α2r2

)2
e−2αr (70)

and

λs2 =
−45

(αa)4(r/a)8
A0(αa)H(αa)

(
eαr − 1− αr − 1

2
α2r2 − 1

6
α3r3

)2
e−2αr. (71)

In the limit αa→ 0, the combination λs1 +2λs2 → − 15
4

(a/r)4, as expected from the work
of Batchelor (1972). In figure 4, results from our numerical calculation of λ1 + 2λ2− 3
are plotted along with the analytic, far-field results both with and without the stresslet
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Figure 4. The complete numerical result for λ1 + 2λ2 − 3 (�, e) along with analytic, far-field
approximations both with (——–) and without (· · · · · ·) the stresslet contribution of (70) and (71).

αa Kv/K0 Kw/K0

0 −5.00 −1.55
0.1 −4.72 −1.08
0.2 −4.46 −0.52
0.3 −4.23 −0.09
0.4 −4.02 0.19

Table 1. Predicted effect of concentration on sedimentation in a fibrous medium.

contributions (70) and (71). The far-field result without a stresslet contribution is just
the decaying portion of the subtraction term in the integrand of (66), or

3

A0(αa)

a

r

(
1 + αa+

α2a2

36
+ O(α3a3)

)
eα(a−r). (72)

The agreement between the analytic and numerical results is very good even at small
values of r/a. However, in spite of this good agreement, by direct calculation it
has been found that accurate evaluation of the integral in (66) still requires the full
numerical result over part of the domain.

To obtain results for the contribution K1 to the sedimentation coefficient (cf. (15)),
the integral in (66) was evaluated numerically for values of the radial coordinate r
such that 2 6 r/a 6 8, and it was evaluated analytically for r/a > 8 by using (70)
and (71). We summarize our theoretical results by separating the coefficient K1 of
(15) into components according to K1 = Kv + Kw , where Kv/K0 is the coefficient
of φU 0 in (57) and Kw/K0 is the contribution of the integral in (66). These results
for the sedimentation coefficient can be combined with (7) and (11) to show that the
overall effect of solute concentration on the normalized diffusion coefficient D/D0 is
φD1/D0, where D1/D0 = 1 + 7/κ0 + K1/K0. Here D0 is the diffusion coefficient in
the gel in the limit of infinitely dilute solute concentration. Values of Kv/K0 and
Kw/K0 are listed for a range of permeabilities αa in table 1. We again note that
the calculation for αa = 0, which corresponds to a pure fluid, was performed with
the same numerical method used for the Brinkman calculation, but with the Stokes
propagator G(x) from (65) substituted for the Brinkman propagator J(x). The fact
that the coefficient agrees exactly with that of Batchelor (1976) therefore confirms the
accuracy of our calculations. These results can be used in combination with (12) to
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determine whether the effect of concentration on gradient diffusion of hard spherical
solutes is enhanced in a gel environment. Such calculations are presented in § 5, where
they are also compared with the experimental measurements that are described in § 4.

3.4. Incorporation of a solute–solute attraction or repulsion

It is relatively straightforward to modify the results presented above to account
for the effects of a short-range, solute–solute attraction or repulsion, as explained
by Batchelor (1982) and Batchelor & Wen (1982). To that end, we introduce an
interaction parameter γ defined by

γ = 3

∫ ∞
2

{
exp

(
− Φ

kT

)
− 1

}(
r

a

)2

d

(
r

a

)
, (73)

where Φ is the energy of interaction between the two solutes. The interactions
characterized by γ affect both the thermodynamic and hydrodynamic contributions
to diffusion. The thermodynamic contribution is captured by the virial coefficient
for the chemical potential, which changes from 1 + 7/κ0 for the hard-sphere case to
1+(7−γ)/κ0 in the presence of the interaction potential. Note that negative values of
γ signify a solute–solute repulsion that results in an increase in the chemical potential
at a given concentration.

The leading effect of concentration on the sedimentation velocity, which is given
by K1/K0 when normalized by the velocity of a single sphere in a Brinkman medium,
is altered to (Batchelor 1982; Batchelor & Wen 1982)

K1

K0

+

∫ ∞
2

(λ1 + 2λ2 − 3)

{
exp

(
− Φ

kT

)
− 1

}(
r

a

)2

d

(
r

a

)
(74)

by the non-zero potential Φ. For interactions that are short-range such that
exp (−Φ/kT )− 1 ≈ 0 for r > 2.2a the expression (74) can be simplified to

K1/K0 + (0.44− 0.56αa)γ. (75)

This simplification is possible because the mobility terms in (74) are closely approx-
imated by 1.32 − 1.68αa in the region 2a < r < 2.2a. Physically the change in the
sedimentation velocity is caused by the fact that two spheres sediment faster when
they are close together than when they are far apart. Hence, a repulsive interaction,
which corresponds to negative values of γ, reduces the sedimentation rate beyond the
hard-sphere contribution K1/K0, where K1/K0 < 0. Repulsive interactions therefore
increase the driving force for gradient diffusion, while simultaneously reducing the
effective hydrodynamic mobility of the particles. For most conditions of interest, in-
cluding those in our experiments, the net effect of a repulsive interaction is to increase
the rate of diffusion relative to the hard-sphere prediction.

4. Measuring rates of diffusion by holographic interferometry
In order to measure rates of diffusion in gels we have used a technique known as

holographic interferometry (Kosar & Phillips 1995; Kong et al. 1997). In a holographic
interferometry experiment, a concentration gradient is imposed throughout a gel over
macroscopic dimensions, and subsequent changes in the solute concentration are
monitored via interference fringes that are generated from laser light. The fact that
the diffusion is monitored over macroscopic distances helps to minimize the effects of
local heterogeneities in the gel, and the presence of the concentration gradient results
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in the measurement yielding a gradient diffusion coefficient, suitable for comparison
with the theory developed above.

Holographic interferometry measurements were used to study diffusion of oc-
taethylene glycol monododecyl ether (C12E8) micelles and the protein bovine serum
albumin (BSA) in agarose gels. These two solutes are of comparable size: BSA has
a hydrodynamic radius between 3.3 and 3.5 nm (Wattenbarger et al. 1992; Kong et
al. 1997), while C12E8 micelles are somewhat smaller (2.7–3.1 nm) (Nilsson & Lind-
man 1983; Matsumoto & Zenkoh 1990; Kong et al. 1997). Both solutes are small
enough to be Brownian, yet large enough for hydrodynamic interactions to be impor-
tant. Such nanometre-scale particles are an industrially and biologically significant
class of solutes. Indeed, diffusion of proteins and surfactant aggregates in gels plays
an important role in membrane, chromatographic, and electrophoretic separations,
in controlled release technologies and drug delivery (Park, Cohen & Langer 1992;
Lawrence 1994; Saltzman et al. 1994; Dunmire & Katz 1997; Haller & Saltzman
1998), and in solute extraction (Hurter & Hatton 1992; Calvert, Phillips & Dungan
1994).

In the thermodynamic and hydrodynamic theories developed above, the concen-
tration dependence of diffusion of colloidal solutes in gels is predicted for spherical
solutes with a short-range interaction potential. It is therefore worth considering
how appropriate it is to apply such a description to the micellar aggregates and
proteins studied experimentally in this work. Micelles are often spherical aggregates
of surfactants which spontaneously self-assemble in aqueous solution. As such, the
size and shape of the aggregate is a function of the aqueous environment in which
the aggregate forms, and the aggregate itself is in a state of dynamic equilibrium,
with individual surfactant molecules continually entering and leaving. Therefore, one’s
ability to treat the micelle as a sphere depends on the extent to which the micelle’s
properties change within a gel environment. In aqueous solution and at room tem-
perature, C12E8 is known to form monodisperse, spherical micelles whose properties
are not strongly temperature or concentration dependent (Puvvada & Blankschtein
1990; Almgren & Alsins 1991; Carale & Blankschtein 1992; Johansson, Hedberg &
Lofroth 1993; Medhage & Alsins 1993; Danino, Talmon & Zana 1997). Furthermore,
measurements of diffusion (Penders et al. 1993; Kong et al. 1997) and aggregation
number (Nolan, Phillips & Dungan 1999) have indicated that the size of these mi-
celles is not affected by the presence of agarose gels. Diffusion of C12E18 micelles in
agarose gels at infinitely dilute solute concentrations has been accurately predicted
by modelling the micelles as spheres (Kong et al. 1997). These prior results provide
support for our approach of representing micelles as sphere with an allowance for a
short-range, solute–solute interaction.

In some respects, it is more apparent that a modified hard-sphere model is an
appropriate representation of the protein BSA than a micelle. As a compact, globular
protein, the size and shape of BSA is not likely to be altered significantly in the
presence of the gel fibres. However, in contrast to the nonionic C12E8 micelles, protein
molecules contain some charged amino acid groups, so that the contribution of
electrostatic interactions to diffusion must be considered. In order to minimize such
contributions, our holographic interferometry experiments with BSA were carried
out in the presence of 0.15 M KCl; previous results at dilute solute concentrations
indicate that, at such an ionic strength, BSA diffusion is at most only weakly affected
by electrostatic interactions (Kosar & Phillips 1995; Johnson et al. 1995). Furthermore,
the Debye length in an aqueous solution of 0.15 M KCl at 25 ◦C is approximately
0.75 nm, nearly five times smaller than the radius of BSA. Hence, to the extent that
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Figure 5. Schematic diagram of the holographic interferometer.

non-hydrodynamic interactions do take place, incorporating a short-range interaction
potential into the theory should account for them.

Agarose, the gel used in our experimental studies, is formed from a nonionic
polysaccharide polymer containing primarily β-D-galactopyranose and 3, 6-anhydro-
α-L-galactopyranose glycose units. It exhibits hysteresis in its gel formation properties,
in that it forms a gel upon being cooled below 20–40 ◦C, but remains in the gel state
upon reheating until the temperature rises above 60–90 ◦C. Electron micrographs and
other experimental measurements on this gel show it to be an interconnected network
of fibres in an open structure, with a mean pore diameter on the order of 25–50 nm
(Stellwagen 1985, 1992; Holmes & Stellwagen 1990; Stellwagen & Holmes 1990;
Westrin 1991; Chui, Phillips & McCarthy 1995). Small-angle x-ray scattering (SAXS)
experiments have shown that the radii of the fibres in agarose gels have a bimodal
distribution, with approximately 13% of them having a mean radius of 4.5 nm and
87% having a mean radius of 1.5 nm (Djabrourov et al. 1989).

The diffusion cell for a holographic interferometry measurement is a 4 cm× 1 cm×
0.5 cm spectrophotometric cuvette. To begin an experiment, a solution of agarose
polymer and solute is added to the cuvette until it is half-filled, and the solution
is allowed to cool. The agarose used here gels at 27 ◦C, so that proteins and other
temperature-sensitive solutes can be mixed under mild conditions before gelation
occurs. After this first gel has formed, a second agarose solution containing a slightly
higher solute concentration is introduced at the bottom of the cuvette by using a
syringe. Adding the second solution from the bottom of the cuvette causes the first
gel to slide upwards, resulting in a flat interface between the two regions at a position
approximately half-way between the top and bottom of the cuvette. The cooling time
required for the bottom gel is approximately 5 minutes.

After the two regions of gel have been put in place and allowed to cool, the cuvette
is left for 2–3 hours, during which time the step change in concentration at the
gel/gel interface at x = 0 relaxes slightly. After this waiting period, a holographic
image of the diffusion cell is made, at time t1. As shown in figure 5, the apparatus
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Figure 6. (a) Schematic diagram of a diffusion cell and (b) interference fringes from
a diffusion experiment.

for making the image consists of a 10 mW HeNe laser, which produces light that is
filtered and split into an ‘object’ beam and a ‘reference’ beam. The latter is needed for
exposure of the holographic plate; it is not a reference beam in the sense of traditional
interferometry. The object beam passes through the temperature-controlled diffusion
cell, while the reference beam impinges directly on the plate. A projection of the
hologram and the object beam onto a white screen exhibits the interference fringes,
which are monitored continuously by a CCD camera that is connected to a Pentium
personal computer.

The optical image that is stored in the holographic plate at time t1 provides
a reference for monitoring solute diffusion in the vertical direction. This image
is superimposed on the actual cell at a later time t2, when the diffusion process
has caused changes in concentration which in turn cause changes in the refractive
index. At vertical positions where the optical path length of the light changes by odd
multiples of one-half of the wavelength, destructive interference occurs and horizontal
interference fringes form. In our experiments, we find it convenient to tilt slightly the
mirror that directs the object beam through the diffusion cell. This change is made
after exposure of the holographic plate, but before the fringes are analysed, and it
has the effect of introducing a linear y-dependence into the change in optical path
length (cf. figure 6). If the mirror is tilted by a small angle α, then the dark fringes
form at positions where

m∆c(z, t1, t2)− αy = (2j − 1)π/kλ for j = 1, 2, 3 . . . . (76)

In (76), ∆c is the concentration change, and m is a constant as long as refractive
index and concentration are linearly related. The wavenumber kλ in (76) is given by
kλ = 2π/λ, where λ is the wavelength of the light, or 632.8 nm for the HeNe laser.

An actual interference pattern obtained after tilting the object beam is shown in
figure 6(b), and consists of a pattern of vertical fringes that bend to form maxima
and minima in the region near the gel/gel interface. This form can be calculated
theoretically by using the solution for the concentration change ∆c

∆c =
1

2

[
erf

(
x√

4Dt1

)
− erf

(
x√

4Dt2

)]
∆c0, (77)
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where ∆c0 is the initial concentration difference. Equation (77) is valid for times t
such that t � L2/D, so that the influences of the top and the bottom of the gel can
be neglected. In addition, this result is derived under the assumption that the effect of
concentration variations on diffusion are negligible, so that D is constant. Substituting
(77) into (76) and differentiating shows that the separation d between the extrema is
related to the diffusion coefficient D by

D =
d2

8

(
1/t1 − 1/t2

)
ln (t2/t1)

. (78)

From a single experiment, several values of D can be obtained by measuring a series
of separations d at successively longer times t2.

The agarose and BSA used for the experiments were purchased from Sigma
Chemical Co. As mentioned above, the Type VII agarose that was used transitions
from a liquid to a gel at 27 ◦C, allowing BSA to be mixed and stirred thoroughly at
temperatures that do not lead to denaturation. The C12E8 surfactant was purchased
from Fluka, and the KCl was purchased from Fisher Scientific. All reagents were
used as supplied, and all solutions and gels were prepared with distilled, deionized
water (10–18 mΩ).

The components of the holographic interferometer are described by Kosar &
Phillips (1995) and Kong et al. (1997), although minor modifications have been
made to the apparatus since that work was completed. For the gel experiments, a
device was constructed that holds two cuvettes so that two samples can be studied
simultaneously. The device is made of copper, which surrounds both cuvettes on four
sides, the front and back being left open to allow the object beam to pass through
the gel. Water circulated through tubing at the base of this cuvette-holder is used to
control the temperature at 25 ± 0.8 ◦C, as monitored by a probe that is located in a
copper sleeve between the two cuvettes. For liquid samples, use of the temperature
controller caused convection currents that disturbed the liquid/liquid interface and
fringes. Liquid experiments were therefore conducted at room temperature, which
was 22± 1.5 ◦C, and the results were adjusted to 25 ◦C by using the fact that the ratio
Dµ/T is a constant.

5. Results and discussion
5.1. Numerical results

The theories developed above can be used to determine the dependence of diffusion on
solute concentration. For hard spheres this dependence is quantified by the coefficient

D1

D0

= 1 +
7

κ0

+
K1

K0

, (79)

which appears in the expansion D/D0 = 1 + φD1/D0, in which the normalization
coefficient D0 describes the rate of diffusion in the gel at infinitely dilute solute
concentrations. The concentration here is based on total volume of the gel, including
both fluid and fibres. The coefficient D1/D0 contains thermodynamic contributions
through the parameter κ0, and hydrodynamic contributions through K1 and K0.
Equation (79) allows one to predict the strength of the concentration dependence in
the gel relative to that in aqueous solution, and to evaluate the relative importance
of thermodynamic and hydrodynamic contributions to that dependence.

Equation (12) indicates that the parameter κ0 depends on the fibre volume fraction
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Figure 7. Plot of the infinite-dilution partition coefficient κ0 as a function of αa for ratios of the
solute-to-fibre radius β = 0.5, 1, 2 and 5.

φf and the ratio β = a/af of the solute radius to the fibre radius. The hydrodynamic
coefficients K1 and K0 are functions only of αa, the ratio of solute size to the square
root of the hydraulic permeability k. However, using the relation for k developed by
Jackson & James (1986).

k

a2
f

=
−3

20

(lnφf + 0.931)

φf
, (80)

one finds that αa can be expressed as β/f(φf), where f(φf) is a function of fibre
volume fraction only. Using this relation and the development in §§ 2 and 3, the
contributions of κ0 and K1/K0 to D1/D0 can be calculated as functions of only β and
φf . In these calculations we consider only cases where the gel is sufficiently dilute so
that the solute has access to most of the pore space, as determined by the requirement
that κ0 > 0.75. It is under these conditions that near-field hydrodynamic solute–fibre
interactions are likely to be relatively less important, so that the approximations
made in the theoretical development above are most appropriate. In figure 7 the
partition coefficient κ0 is shown as a function of αa for several values of the ratio β.
Inspection of these curves indicates that restriction to values of αa 6 0.4 allows the
above constraint on the partitioning behaviour to be met.

In figure 8(a–c), curves for 7/κ0,−K1/K0 and D1/D0 are shown as a function
of fibre volume fraction for values of β equal to 0.5, 1 and 5. Clearly D1/D0 is
significantly augmented in the gel for all values of β, i.e. the theory predicts a stronger
concentration dependence of solute diffusion in the gel than in aqueous solution.
Over the range of fibre volume fraction and size ratios considered here, D1/D0 is
increased more than four-fold: from D1/D0 = 1.45 in aqueous solution to D1/D0 = 5–
6 in the gel. The influence of the gel on this concentration dependence increases
with increasing fibre volume fraction. This effect is a result of changes in both the
thermodynamics and hydrodynamics inside the gel: increasing fibre volume fraction
decreases the zero-order partition coefficient κ0, and also decreases the magnitude
of the hydrodynamic coefficient K1/K0. Since the latter is a negative contribution to
D1/D0, the solute concentration effect is a result of an increase of the thermodynamic
effect (7/κ0 increases as φf increases) combined with a decrease in the strength
of the solute–solute hydrodynamic interactions inside the fibrous medium. Both of
these changes are comparable, and therefore the enhancement in D1/D0 cannot be
attributed to either effect alone.

Since the results in figure 8 were calculated over the same range of αa in all three
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Figure 8. Thermodynamic and hydrodynamic contributions to the concentration dependence are
plotted vs. the fibre volume fraction φf for ratios of the solute-to-fibre radius of (a) β = 0.5,
(b) β = 1.0 and (c) β = 5.0.

cases, it is apparent that the magnitude of the changes in 7/κ0, K1/K0 and D1/D0

differs only slightly for the three values of β. However, what does change substantially
as β is varied is the range of fibre volume fractions over which the enhancement in
D1/D0 is observed. For the case where the solute is half as large as the fibre, β= 0.5,
the fibre volume fraction must be as high as 10% for D1/D0 to exceed 5.0. At such a
low value of β, fewer fibres are needed to achieve a given volume fraction, and the
result in a relatively porous gel in which the influence of fibres on solute partitioning
or viscous interaction is weak. In contrast, as β increases one observes a decrease in
the gel concentration needed to effect a given enhancement in D1/D0. At β= 1 only
a 5% gel is needed to reach D1/D0 = 5, whereas at β = 5 the same effect is present
at φf = 0.5%. Thus, in the case where the gel fibres are thin relative to the solute,
diffusion is strongly affected because so many more fibres are present at a given φf .

5.2. Comparison with experimental data

Measured diffusion coefficients of C12E8 micelles in aqueous solution are plotted
as a function of solute volume fraction in figure 9. These experiments, and those
described below, were performed with an initial concentration difference ∆c0 of
1 wt % surfactant. The conversion from weight percent to volume fraction is made
by using an aggregation number of 79.4 (Johansson et al. 1993) and a surfactant
molecular weight of 538.77, and the volume fractions reported are an average of
those in the lower (i.e. surfactant-rich) and upper (i.e. surfactant-poor) regions of the
cuvette. Extrapolation of the data to obtain the infinite-dilution diffusivity D0 yields
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Figure 9. Diffusion coefficients for C12E8 and BSA solutes in aqueous solution are plotted as a
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Figure 10. Normalized diffusion coefficients of C12E8 in aqueous solution, in 1 wt % agarose gel,
and in 2 wt % agarose gel are plotted as a function of solute volume fraction.

a value of 9.12± 0.41×10−7 cm2 s−1 at 25 ◦C, which corresponds to a Stokes–Einstein
radius of 2.7± 0.12 nm. This hydrodynamic radius is in good agreement with results
reported previously (Nilsson & Lindman 1983; Matsumoto & Zenkoh 1990; Kong et
al. 1997).

To evaluate the effect of solute concentration, one can normalize the data by D0 and
evaluate the slope of a line fit to a plot of D/D0 vs. φ. For the data shown in figure 9,
the resulting line has a slope of 2.8± 1.4, in reasonable agreement with, but somewhat
higher than, the value of 1.45 predicted by Batchelor (1976). The uncertainties in the
slopes reported here represent 95% confidence limits on the slope of a plot of D
vs. φ, modified to account for the uncertainty in the normalization coefficient D0.
Results for the protein BSA, measured at a KCl concentration of 0.15 M and a pH of
6.9, are also shown in figure 9. For those data, the measured Stokes–Einstein radius
was 3.3 ± 0.13 nm, and the slope of the line obtained by plotting D/D0 vs. φ was
3.0± 1.6. Unlike the nonionic micelles, the plot for the BSA became nonlinear at the
higher volume fractions, and hence the slope was calculated using data in the range
0 < φ < 4%.

In figure 10, diffusion coefficients for the C12E8 micelles are plotted as a function
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Figure 11. Normalized diffusion coefficients for BSA in aqueous solution, in 1 wt % agarose gel,
and in 2 wt % agarose gel are plotted as a function of solute volume fraction.

of micelle volume fraction in solution and in agarose gels. Gel concentrations of
1 wt % and 2 wt % are considered, and the diffusion data are normalized by D0,
the diffusion coefficient extrapolated to zero solute volume fraction at a particular
gel concentration. For all three cases the data show the expected trend, with the
normalized diffusion coefficient increasing linearly with concentration. Furthermore,
the slopes of the lines increase with increasing concentration, being 2.8± 1.4 in pure
solution, 7.7 ± 1.3 in the 1 wt % gel, and 11.0 ± 2.5 in the 2 wt % gel. This trend of
a stronger concentration dependence in the gel is consistent with predictions of the
theory described above.

By using (80) above in conjunction with (20) in Clague & Phillips (1997) to account
for the bimodal nature of the fibre radii, we estimate the hydraulic permeability of
the agarose to be such that α = 0.085 n m−1 for the 1 wt % gel and α = 0.132 n m−1

for the 2 wt % gel, yielding αa values of 0.23 and 0.36, respectively, for the micelles.
For these parameter values, the methods of § 3 (cf. (79)) predict slopes of 3.7 and 5.1
for the 1 and 2 wt % gels, respectively. Hence, the theory is in qualitative agreement
with the data, although it underpredicts the size of the concentration effect. We note,
however, that the approximation inherent in modelling the solutes as hard spheres
and the gel as a random fibre matrix, which is further simplified to a Brinkman
medium, introduces uncertainty in the theoretical predictions, and the agreement
between theory and experiment may thus be considered reasonable. The agreement is
improved considerably by incorporating a short-range repulsion into the theoretical
prediction, as discussed below.

Diffusion coefficients for BSA, again normalized by the appropriate infinite-dilution
value, are plotted in figure 11. In this case, solute concentrations were converted to
volume fractions by using the measured 3.3 nm radius of the BSA and a molecular
weight of 67 000. As with the C12E8, results are shown for pure solution, 1 wt % and
2 wt % agarose gel. The results are quantitatively similar to those shown in figure
10. Each set of data shows a linear increase in D/D0 with solute concentration, and
the slopes increase from 3.0 ± 1.6 for the pure solution to 5.9 ± 0.9 and 8.7 ± 1.5 in
the 1 and 2 wt % gels, respectively. These measured slopes are to be compared with
the predicted values of 4.2 and 5.7, showing that the theory again underpredicts the
strength of the effect, although less so for BSA than for C12E8 micelles.

The hydrodynamic and thermodynamic theories presented above are based upon
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D1/D0

System αa κ0 Theory (γ = 0) Theory (γ 6= 0) Experiment

C12E8 (γ = −4.5)

Solution 0 1.0 1.45 4.0 2.8± 1.4
1% agarose 0.23 0.93 3.7 7.1 7.7± 1.3
2% agarose 0.36 0.87 5.1 9.2 11.0± 2.5

BSA (γ = −2.1)

Solution 0 1.0 1.45 2.6 3.0± 1.6
1% agarose 0.28 0.91 4.2 5.9 5.9± 0.9
2% agarose 0.43 0.83 5.7 7.8 8.7±1.5

Table 2. Effect of concentration on hindered diffusion: comparison of theory and experiment.

a representation of agarose as a homogeneous medium of straight, cylindrical fibres.
It is worth noting, however, that there is some evidence of inhomogeneities in
these gels. Johnson & Deen (1996) have measured the permeability of agarose by
imposing a pressure-driven flow through 70–100µm thick agarose membranes. At
high concentrations, φf > 0.05, their data are in reasonable agreement with (80), but
at low concentrations their measured permeabilities were four to seven times larger
than the predicted values. Since (80) agrees quantitatively with numerical calculations
of permeabilities in homogeneous, three-dimensional arrays of fibres (Higdon &
Ford 1996; Clague & Phillips 1997), these deviations are presumably caused by
inhomogeneities in the gel.

Increasing the permeability by a factor of four in our calculations corresponds to
using α = 0.043 nm−1 for the 1 wt % gel and 0.066 nm−1 for the 2 wt % gel. Under
these conditions, the predicted slopes of the lines formed by plotting D/D0 vs. φ
are lowered to 2.9 and 3.9 for the micelles and 3.2 and 4.6 for the BSA in the 1
and 2 wt % gels, respectively. Hence, the qualitative behaviour is unchanged, but the
theory underpredicts the data to a greater extent than it does with the permeabilities
calculated from (80). One would expect the hydraulic permeability to be more sensitive
to inhomogeneities or microchannels in the gel than the diffusion coefficient. Hence, it
would appear that attempting to account for the effects of structural inhomogeneities
on diffusion by inserting a corrected permeability into the theory may cause the effect
of the gel fibres to be underestimated. In the discussion below we refer to values of
αa calculated from (80) in conjunction with (20) in Clague & Phillips (1997).

The experimentally measured slopes of the lines in figures 10 and 11 are summarized
in table 2. Also shown are the theoretically predicted slopes, both with (γ 6= 0) and
without (γ = 0) an additional repulsive interaction potential. Without an interaction
potential, the measured effect of concentration on D/D0 is consistently greater than
what is predicted for hard-sphere solutes. However, choosing γ = −4.5 for the C12E8

micelles yields slopes that are within the confidence intervals shown both for diffusion
in pure solution and in the 1% and 2% agarose gels. Since C12E8 micelles have
no electrostatic charge, the solute–solute repulsion is presumably caused by steric
interaction between the hydrophilic head groups of the micelles. Such steric repulsion
is partly accounted for in our treatment of the micelles as hard spheres with a size
given by the hydrodynamic radius, but an additional ‘soft-sphere’ repulsion may be
needed to fully account for the influence of surfactant headgroup overlap forces.
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One can estimate the strength of these forces by using scaling arguments originally
developed by de Gennes for the overlap of polymer brushes (de Gennes 1987;
Israelachvili & Wennerstrom 1992). The resulting expression for the steric repulsive
energy Φ/kT between two spheres with radius a is (McClements & Dungan 1997)

Φ

kT
= 64π

aL2

s3

[
1

5

(
2L

∆

)1/4

+
3

35

(
∆

2L

)
− 1

77

(
∆

2L

)11/4

− 3

11

]
for ∆ < 2L, (81)

where L is the thickness of the chain region, s is the lateral distance between chains,
and ∆ is the surface to surface separation. The distance s may be estimated by dividing
the surface area of the hard-sphere region by the micelle aggregation number. By
substituting (81) into (73) and using γ = −4.5, one finds that a thickness L = 6 Å
corresponds to the region of ‘soft-sphere’ overlap repulsion. This value of L appears to
be quite reasonable, considering the molecular structure of C12E8 micelles. Molecular
theories for the self-assembly of these surfactants (Naor, Puvvada & Blankschtein
1992; Carale, Pham & Blankschtein 1994) indicate that the radial distance from the
micelle centre to the edge of the headgroup region is approximately 35 Å. Thus, the
surfactant headgroups project approximately 8 Å beyond the hydrodynamic radius of
27 Å used in our model of C12E8, close to the value of 6 Å estimated from (73) and
(81).

A smaller short-range interaction, for which γ = −2.1, similarly increases the
predicted slopes for BSA such that all three values lie within the indicated 95%
confidence intervals for the data. As noted above, at an ionic strength of 0.15 M the
Debye length in an aqueous solution of KCl is approximately 0.75 nm. This value
may be substituted into the Derjaguin expression for the interaction of two charged
spheres

Φ

kT
= 2π

εaφ2
0

kT
ln (1 + e−κ∆), (82)

allowing an estimate to be obtained for the value of γ arising from electrostatic
interactions. In (82) ε is the aqueous dielectric permittivity, and φ0 is the surface
potential of the BSA. Substitution of this expression into (73) indicates that the value
of γ = −2.1 shown in table 2 corresponds to a surface potential of φ0 = −13 mV.
This value is comparable in size to experimentally measured values (φ0 ≈ −20 mV)
for BSA in solutions with an ionic strength of 0.15 M and a pH near 7.0 (Vilker,
Colton & Smith 1981; Bowen & Williams 1996).

For both nonionic and ionic solutes, it is assumed above that the interaction energy
Φ is short-range relative to the size of the particle. For both types of colloidal particles
this assumption of a short-range potential is reasonable. Although the criterion that
exp (−Φ/kT )− 1 ≈ 0 for r > 2.2a is not strictly satisfied in either case, it is true that
exp (−Φ/kT ) − 1 ≈ 0 for r > 2.5a, and the error resulting from the approximation
used for the mobility functions in the expression (74) does not affect the comparison
significantly given the experimental uncertainty in the measured slopes. Overall we
therefore conclude that, for both nonionic micelles and charged protein solutes,
the values given in table 2 realistically capture the size of short-range interactions
between the particles. In the case of C12E8 micelles, these interactions arise primarily
from overlap forces not captured in the hard-sphere interactions, and in the case
of BSA electrostatic forces are responsible for this effect. Note that in the above
independent estimates for these interactions the influence of attractive Van der Waals
forces is neglected. Including them would counteract in part the repulsive steric and
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electrostatic interactions mentioned, improving the agreement between the estimated
and measured interaction parameter γ.

6. Conclusion
The effects of solute concentration on hindered gradient diffusion in rigid, fibrous

porous media can be separated into two primary mechanisms. First, the volume
excluded by the fibres increases the strength of the thermodynamic interactions
between solutes by increasing the effective solute concentration in the liquid phase.
In addition, hydrodynamic interactions between the solutes are screened by the
immobile fibres, which act as an effective or Brinkman porous medium. For gels in
which steric or excluded-volume interactions are dominant, and energetic interactions
are significant only over short distances, these influences tend to increase the effect
of concentration on hindered gradient diffusion relative to gradient diffusion in pure
solution. It has been shown here that mathematical predictions derived from these
physical concepts are in good agreement with experimental data, providing evidence
that both thermodynamic and hydrodynamic interactions play important roles in
hindered diffusion in microporous gels.
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